A Newton-like method for solving rank constrained linear matrix inequalities

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

‎A matrix LSQR algorithm for solving constrained linear operator equations

In this work‎, ‎an iterative method based on a matrix form of LSQR algorithm is constructed for solving the linear operator equation $mathcal{A}(X)=B$‎ ‎and the minimum Frobenius norm residual problem $||mathcal{A}(X)-B||_F$‎ ‎where $Xin mathcal{S}:={Xin textsf{R}^{ntimes n}~|~X=mathcal{G}(X)}$‎, ‎$mathcal{F}$ is the linear operator from $textsf{R}^{ntimes n}$ onto $textsf{R}^{rtimes s}$‎, ‎$ma...

متن کامل

‎a matrix lsqr algorithm for solving constrained linear operator equations

in this work‎, ‎an iterative method based on a matrix form of lsqr algorithm is constructed for solving the linear operator equation $mathcal{a}(x)=b$‎ ‎and the minimum frobenius norm residual problem $||mathcal{a}(x)-b||_f$‎ ‎where $xin mathcal{s}:={xin textsf{r}^{ntimes n}~|~x=mathcal{g}(x)}$‎, ‎$mathcal{f}$ is the linear operator from $textsf{r}^{ntimes n}$ onto $textsf{r}^{rtimes s}$‎, ‎$ma...

متن کامل

A METHOD FOR SOLVING FUZZY LINEAR SYSTEMS

In this paper we present a method for solving fuzzy linear systemsby two crisp linear systems. Also necessary and sufficient conditions for existenceof solution are given. Some numerical examples illustrate the efficiencyof the method.

متن کامل

A reduced Newton method for constrained linear least-squares problems

We propose an iterative method that solves constrained linear least-squares problems by formulating them as nonlinear systems of equations and applying the Newton scheme. The method reduces the size of the linear system to be solved at each iteration by considering only a subset of the unknown variables. Hence the linear system can be solved more efficiently. We prove that the method is locally...

متن کامل

A Finite Step Projective Algorithm for Solving Linear Matrix Inequalities

This paper presents an algorithm for finding feasible solutions of linear matrix inequalities. The algorithm is based on the method of alternating projections (MAP), a classical method for solving convex feasibility problems. Unlike MAP, which is an iterative method that converges asymptotically to a feasible point, the algorithm converges after a finite number of steps. The key computational c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Automatica

سال: 2006

ISSN: 0005-1098

DOI: 10.1016/j.automatica.2006.05.026